

2009, 2010 Copyright by publisher AGSTU AB. 1

SSiieerrrraa 22001100 -- RReeaall--TTiimmee
KKeerrnneell iinn HHaarrddwwaarree

2010-03-18 Product Specification and Data Sheet

AGSTU AB

Address: AGSTU AB, Dragverksgatan 138,
 S-724 74 Västerås, Sweden

Mail: info@agstu.com
Phone: +46 (0)70 66 89 517
Email: info@agstu.com
URL: www.agstu.com

Features
• Scheduling mechanism in hardware working in

parallel to the CPU

• Accelerates the scheduling, with no scheduling,
time tick, queue sorting etc. overhead

• 100 % deterministic

• Relieves pressure from the CPU

• Tasks, semaphores, flags, timers for delay and
periodic tasks with deadline control etc.

• Handles smart and simple external interrupts as
task with priorities (do not disturbed high priority
tasks)

• Advanced hardware interface to start blocked
task.

• Small software API, about 2Kb in memory

• Long Life HW Component, same function and
time behaviour in the future.

Supported Devices
• Altera Family FPGAs

• Other programmable devices.

CORE Facts

Can be provided with Core
Documentation User’s Reference Manual

HW Reference Manual
Design File Formats EDIF/ngc netlist;

VHDL Source RTL
Verification SW Test bench for

HW/SW system (SW test
program)

Instantiation templates VHDL
Reference designs &
application notes

Altera
Reference Platform Tool

Additional Items C-code API is delivered to
utilize the functions of
the Sierra RTK.

Simulation Tool Used
Model Technology ModelSim™ SE/EE

Support
Support provided by AGSTU

The Sierra Real-Time Kernel consists of:
• A priority driven scheduler with preemption

• A Resource Manager, which can be used for any
kind of IPC, e.g. semaphores, flags

• A Time Manager, which contains functionality for
handling delay, periodic start of tasks and
deadline control.

• An Intelligent Interrupt Handler

This manual covers the use of HW based real-time kernel Sierra. Configuration of different Sierra, see web page www.agstu.com.

@ 2009, 2010 Copyright by publisher AGSTU AB.

Dragverksg 138, S-724 74 Västerås, Sweden. Mail: publisher@agstu.com. www.agstu.com

All rights reserved. No part of this manual may be reproduced, in any form or by any means, without permission in writing from the
publisher. The author and publisher of this datasheet make no warranty of any kind.

http://www.agstu.com/

Product Specification Sierra Real-Time Kernel

2009, 2010 Copyright by publisher AGSTU AB. 2

In general purpose OS´s time management control
and all types of resource handling are time
consuming due to large amount of queue handling.
All types of queue handling, by that means searching
in a specific queue, eat a lot of CPU cycles.

However, moving this to hardware much of the job
can be performed in parallel to the CPU, also some
new function as deadline control can be implemented
in hardware. The Sierra has an easy and safe
Interrupt Handler that makes interrupt handling much
simpler. At the same time it improves performance
and behavior.

Briefly, the external interrupts are routed to the Sierra
and each interrupt service routine, ISR, is treated as
a task waiting for an external event. When an
interrupt occurs the ISR is scheduled as an ordinary
task by the Sierra and will be started when it has the
highest priority in the ready state.

Benefits
• When using the Sierra, there is almost no RTK-

footprint in memory. Merely a driver to
communicate with the hardware kernel

• Less cache misses, in systems with a cache,
since the Sierra driver has such a small memory
footprint.

• Optimized system behavior as the CPU-load is
minimized

• Complete system predictability since hardware is
100 % deterministic and deadline control.

• Plug in architecture; add new functions to Sierra
when needed.

Application
The Sierra solution is suitable for all kinds of small
embedded systems, System-On-Chip (SoC) for
example, and real-time systems in general to improve
performance and predictability. Sierra can be used as
a standalone real-time kernel or real-time operating
system accelerator.

Specifics

In this version, Sierra supports 8 tasks at 8 priority
levels, 8 semaphores, 8 flags, and two external
interrupts.

On request, the Sierra can be extended to other
configurations, e.g. more tasks, resources etc.
Contact AGSTU for more information.

Functional description
The core is partitioned into modules as shown in and
described in the text below.

Core Engine
The Sierra is partitioned into functional units

• Sierra Interface

• Scheduler

• Interrupt Handler

• Resource Manager; can be used for
semaphores and flags

• Time Manager

Sierra interface
The interface to the Sierra is divided into a generic
bus interface, GBI, and a technology dependent bus
interface, TDBI. The GBI is bus independent while the
TDBI is dependent on the specific bus in the system.

Tmq

Rmq

IR

Q

BI

DBI

G

T

Time
Manager

Resource
Manger

Interrupt
Handler

Generic Bus
Interface

Technology
Dependent
Bus Interface

I/O

Irq

Tmq

Rmq
Scheduler GBI

Kernel Accelerator
Sierra

CPU
Bus

T
D
B
I

External
Interrupts

External Start of
blocked tasks

Running
task info

 Figure 1 - Architecture of the Sierra

Product Specification Sierra Real-Time Kernel

This design of the Sierra makes it very easy to
interface it towards different kinds of busses.

The Sierra can be delivered with TDBI for Altera. The
Sierra edif/ngc netlist has the GBI allowing the user to
attach desired TDBI. The TDBI is delivered as source
code. A customer can also develop other specific
TDBIs or let AGSTU do it for a reasonable fee.

All communication with the Sierra is carried out
through a set of registers as service calls. The service
calls are decoded in the Sierra interface and routed to
the specific unit that will handle the service call.

Scheduler

The Scheduler controls all scheduling in the Sierra.
The number of tasks that the Sierra can handle is 16
and there are 8 priority levels for the tasks.

Normally a number of tasks are created when the
system is initialized. However, the Sierra allows tasks
to be created and deleted dynamically during runtime.
When a task is created it is initialized to a specified
state (blocked or ready). Tasks must have a priority
and the priority must be initialized when the task is
created. The scheduler guarantees that the task with
the highest priority in the system that is ready. The
scheduler uses a FIFO scheme for tasks on same
priority level.

The Sierra supports the following task management
primitives:

• Create/Delete task

• Block/Unblock task

• Enable/disable context switch

• Get task status

Resource Manager
The Sierra provides 16 semaphores and 4 flags.
Each of these can be used for any form of
interprocess communication, IPC, e.g. protecting of
shared memory etc.

The following synchronization primitives are
supported:

• Set flag/Clear flag/Wait for flag(s)

• Take/release semaphore

Time Manager
There are two time handling functions implemented,
delay and support for periodic tasks. In software
implementation, these functions will increase the CPU
load.

In ordinary software RTOS the principle for the delay
functionality is as follows. Every clock tick the RTOS
has to check the delay queue and decrease each
tasks timer and examine if any timer has expired.
When a task timer expires the task has to be
scheduled by the system again. All this work has a
cost in time and this time increases with number of
tasks using the delay function.

When it comes to the Sierra, all handling with timers
etc. is done in hardware and all cost in time have
been removed from the system.

The Sierra supports following time management
primitives:

• Set/get time base

• Initialize periodic time for a periodic task

• Wait for next period with deadline control

• Delay

Interrupt Handler
The response time for interrupts generated by
external devices must be kept short in all kinds of
systems to obtain successful interaction with the
external environment. Normally, external interrupts
are routed to the CPU, which means that when an
external interrupt occurs, the executing task will be
interrupted. This has of course effects on the
predictability of the system, as an ISR (Interrupt
Service Routine) can preempt and run before a high
priority scheduled task.

When using the hardware Interrupt Handler, external
interrupts are routed in to the Sierra. Each ISR is
treated as a task waiting for an external event. When
an interrupt occurs the ISR is scheduled by the HW-
Sierra and will start running when it has the highest
priority in the ready queue. No SW execution at al.

The following primitives for interrupt handling exist:

• Wait for interrupt

Pinout
The generic bus interface, GBI, signals are described
in figure 2 and table 2 below.

address[7..0]

clk

chipselect_n

read_n

writedata[31..0]

extirq_n[1..0]

reset_n

write_n

external_call_start_blocked_task

external_taskid_start[2..0]

readdata[31..0]

irq

external_runing_taskid_inf o[2..0]

external_ack_start_task

sierra

inst3

Figure 2: Sierra Generic Bus Interface (GBI)

Pin Name Direction Description

clk Input, Sys System clock

reset_n Input, Sys HW reset

cs_n Input, Bus Chip select

write_n Input, Bus Read / Write

addr(7:0) Input, Bus Address bus

din(31:0) Input, Bus Data bus in

dout(31:0) Output, Bus Data bus out

2009, 2010 Copyright by publisher AGSTU AB. 3

Product Specification Sierra Real-Time Kernel

2009, 2010 Copyright by publisher AGSTU AB. 4

irq_n Output,
CPU

Task switch
interrupt

extirq_n(1:0) Input, User External
interrupts

External_runi
ng_taskid_inf
o[2..0]

Output,
User

Updating
Running task
id (binary)

external_call_
start_blocked
_task

Input, User Start of
Blocked Tasks,
Not used = ‘0’.

external_ack
_start_task

Output,
User

Start of
Blocked Tasks

external_taski
d_start[2..0]

Input, User Start of
Blocked Tasks

Table 2: Sierra Pinout

Verification Methods
Functional simulation of the Sierra carried out using
Simulation with testbenches and HW/SW test.

The core has also been verified and used in systems
with Altera FPGAs.

Functional co-verification of the Sierra kernel
hardware together with the software API has been
executed in Altera Embedded Development Kit.

Recommended design experience
Implementer of this core should be familiar with HDL
design and design flows. Some knowledge in real
time SW programming help to understand how this
core works. Experience in designing systems with
CPUs and other devices are recommended. This core
can easily be integrated in any kind of system that
has a CPU.
AGSTU AB also arrange intensive courses to learn
FPGA SOC with Sierra. For more information go to
agstu.com.

Design Services
AGSTU also offers core integration, core
customization and other design services.

Ordering Information
This product is available from AGSTU, under terms of
the SignOnce IP License. See www.agstu.se for
additional information about this product.

Address: AGSTU AB, Dragverksgatan 138,
 S-724 74 Västerås, Sweden

Mail: info@agstu.com
Phone: +46 (0)70 66 89 517
Email: info@agstu.com
URL: www.agstu.com

AGSTU cores are purchased under a Licence
Agreement, copies of which are available on request.
AGSTU retains the right to make changes to these
specifications at any time, without notice. All
trademarks, registered trademarks, or service marks
are the property of their respective owners.

Related Information

Altera and Xilinx Programmable Logic
For information on programmable logic or develop-
ment system software, contact your local Altera or
Xilinx sales office, or visit www.altera.com or
www.xilinx.com.

http://www.agstu.se/
http://www.agstu.com/
http://www.altera.com/
http://www.xilinx.com/

	Sierra 2010 - Real-Time Kernel in Hardware
	Features
	Supported Devices
	The Sierra Real-Time Kernel consists of:
	Tmq
	Rmq
	IRQ
	TDBI

	Benefits
	Application
	Specifics

	Functional description
	Core Engine
	Sierra interface
	Scheduler
	Resource Manager
	Time Manager
	Interrupt Handler

	Pinout
	Pin Name

	Verification Methods
	Recommended design experience
	Design Services
	Ordering Information
	Related Information
	Altera and Xilinx Programmable Logic

