AGSTU

User Reference Manual, ver 9.4.1

Sierra

This manual covers the use of Sierra RTK and al function perhaps is not implemented in the version you chose.
Configuration and some implementation results of the different Sierra, see web page www.agstu.com. The
educational Sierra have not implemented all the functions described in this documentation.

© Copyright by publisher AGSTU AB.
www.agstu.com

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in
writing from the publisher.

The author and publisher of this manual make no warranty of any kind.

http://www.agstu.com/

Contents

Introduction 7
ADOUL THIS MANUAL........eiiiiiiiiiec e 7
REVISION HISTOIY ...ttt bbbttt et sbe e sab e e nbe e nae e 7
PUIDOSE ...ttt ettt ettt e e et e e st e e b bt e e sabe e e bb e e e eaeeenbea e 8
=11 00T S SROUPRPPPPRR 8

Sierra RTK - General Description 9
Configuration OF the APecie e 9
(@00 -l oo 3T TS SRR SRR 9
SIBITA INLEITACE ... ettt bbb b 10
SIErra CONFIGUIALIONeeiiiiie et 10
ST 1o 1] 1 USRS 11

LI TS S - S 12
Time Management CONLIOIIETc.viiviiieie e 13
Semaphore and Flag HanAIErc.cooiiiieiicie st 13

Information, Setup and Initiating 14

Sierra Hardware/Software INItIation ..o 14
DESCIIPEION. ...ttt 14
FUNCEION AECIATALIONeieieceie et 14
ATGUIMENT ... 14
REEUIN COUBS ...ttt ettt st nresbe b 14

SIEITA HW VEISION ...ttt sttt sttt ettt re et 14
DESCIIPLION. ...ttt ettt ae e 14
FUNCEION AECIATALIONeieiieceie et 15
ATGUIMENT ...t 15
RELUIN COUBS ...ttt bbbttt neesbe e b 15
EXAMPIE ..o 15
Special print function (INFO.C).......c.oeiiiiiiiii e 15

SIEITA SW VEISION. .. .oiiiiiiic ittt et e e et e e e st e e e tae e e bne e eteeeenees 15
DESCIIPLION. ...ttt 15
FUNCEION AECIATALIONviieeciic e 15
ATGUIMENE L.ttt et e st e e st e e e s nbb e e e e nnbbeeee s 15
RELUIN COUBS ...ttt ettt sttt e b et eseesreesae s 15
EXAMPIE ..o 16

Set and Read Time Base REGISTETccviiiiiiieieiiee e 16
DESCIIPLION. ..ttt 16
FUNCLion deClarationocooiiiiiiiiie e 16
A 08 1= o ST 16
RETUIMN COUBS ...ttt ettt 16
EXAMPIE ..o 17

Task Management 18
TASK _CTBALE ...ttt bbbt 18

DESCIIPLION. ...ttt 18
FUNCLION deCIAratioNcoviiiiiiiiiie e 18

Sierra User Reference Manual, @ 2017 Copyright by publisher AGSTU AB. 3

ATGUIMENT ... 18

REEUIN COUBS ...ttt sttt sbeenae s 19

0] T AT AV T T o SRS 19
EXAMPIE ..o 19

BASK STANT .veeiirie et e s e e e st e e st e e e st e e e aabeesaraeeareeeans 20
DESCIIPEION. ...ttt 20
FUNCLION deCIAaratioNncooiiiiiiiiei e 20

N 08 1= o SRS 20

RELUIN COUBS ...ttt sttt bttt sb et sb et e e sre e b 20
EXAMPIE ..o 20
TASK_GELINTO ...t e 21
DESCIIPLION. ...ttt 21
FUNCLION dECIArAtIONcocivii et 21

N 8 1= o SRS 21

RELUIN COUBS ...ttt ettt sttt e b et eseesreesae s 21
EXAMPIE ..o 21

LE3 11V 0 1 FS TSR PRTOTPSPOTP 22
DESCIIPLION. ...ttt 22
FUNCLION deCIAratioNcoviiiiieiiiie e 22

A 08 1= o ST 22

RETUIM COUBS ...ttt b et enne e 22
EXAMPIE ..o 22

LS TP PO TP PP PP RPPPPIN 23
DESCIIPLION. ...ttt bbb 23
FUNCLioN deClarationooiiiiiiiieic e 23
ATGUIMENE L.ttt e e e st e e e bbb e e e s nnbb e e e e e nnbbaeee s 23

RETUIM COUBS ...ttt b et enne e 23

BXAMPIE ... 23
TASK_DIOCKt 24
DESCIIPLION. ...ttt ettt 24
FUNCLION deCIArationcoviiiiiiiiiie e 24
ATGUIMEBNE L.ttt e e et e e e bbb e e e s nbb e e e e e nnbbaeee s 24

RETUIMN COUBS ...ttt ettt sbeennne e 24
EXAMPIE ..o 24
tASK_ChANGE_PFIO .. 25
DESCIIPLION. ...ttt ettt 25
FUNCLIoN deCIArationcovoiiiiiiiiiec e 25
ATGUIMENE ...ttt b et s e e e st be e e bee e e nbneenaees 25

RELUIN COUBS ...ttt et e e s re e et e e e sbe e e s tr e e snneeas 25

BXAMPIE . 25

TASK _ABIELE ...t e 26
D 1S 11040 o ST S 26
FUNCLION dCIAratioNccviiiiiiiiiie e 26
ATGUIMENE ...ttt e st e e et b e e e nba e e e e e e nnees 26

RELUIN COUBS ...ttt ettt et e e et e e s ae e et e e s ste e e s aeeesnneeas 26

BXAMPIE .. 26

IRQ Management 27
WAL TOF INEEITUDL ... bbb e ee s 28
DESCIIPLION. ...ttt ettt be ettt 28
FUNCLION dBCIATALIONiiiiiie e 28
ATGUIMENE L.ttt e et e et e e st e e e bbe e e nbee e e nbeeeeaees 28

RELUIN COUBS ...ttt ettt e e abe e et e e e str e e e treesnaeeas 28
EXAMPIE ..o 28

Time Management 29
DESCIIPLION. ...ttt bbbttt b et 29

Sierra User Reference Manual, @ 2017 Copyright by publisher AGSTU AB. o4

FUNCEION AECIATALION ...ttt e e e e e s 29

N 08 1= o SRS 29

REEUIN COUBS ...ttt ettt sttt sresbe e b 29
EXAMPIE ..o 29
INIE_PEIIOA_TIME ..ttt ettt ettt e e sbe et e sneeanean 30
DESCIIPEION. ...ttt 30
FUNCLION deCIAaratioNncooiiiiiiiiei e 30

N 08 1= o SRS 30

RELUIN COUBS ...ttt sttt bttt sb et sb et e e sre e b 30
EXAMPIE ..o 30
WaIE_TOr_NEXE_PEIIOU ...ttt 31
DESCIIPLION. ...ttt 31
FUNCLION dECIArAtIONcocivii et 31

N 8 1= o SRS 31

RELUIN COUBS ...ttt ettt sttt e b et eseesreesae s 31
EXAMPIE ..o 31
Semaphore Management 33
eI LT PSRRI 33
DESCIIPLION. ...ttt bbbt 33
FUNCLIoN deCIArationcooiiiiiiiiiee e 33
ATGUIMENE L.ttt e e e st e e e bbb e e e s nnbb e e e e e nnbbaeee s 33

RETUIM COUBS ...ttt b et enne e 33
EXAMPIE ..o 33
SBIML_TEIBASE ...ttt b bbbt bbb bbb nn et ne s 34
DESCIIPLION. ...ttt bbb 34
FUNCLIoN deCIArationcovoiiiiiiiiiec e 34
ATGUIMENE L.ttt e et e e et e e e bbb e e e s s b e e e e e nnbbaeee s 34

RETUIMN COUBS ...ttt bbb sieennne e 34
EXAMPIE ..o 34
SEIM_TBAG ...ttt ettt b bbb b bbbt b bbbt re s 35
DESCIIPLION. ...ttt ettt 35
FUNCLION deCIAratioNccviiiiiiiii e 35
ATGUIMEBNE L.ttt e e bt e e s bbb e e e s s b e e e e e nnbbaeee s 35

RETUIMN COUBS ...ttt sb e ennneen 35
EXAMPIE ..o 35

Flag Management 36
LT L LSRR 37
D LTTod 0] 1o] FO ST PR 37
FUNCLION dCIAratioNccviiiiiiiiiie e 37
ATGUIMENE ...ttt b et s e e b be e e b ae e e e e e nnees 37

RELUIN COUBS ...ttt et e e s be et e e e sbr e e s araesaaeeas 37
EXAMPIE ..o 37

IAG_SBE e 38
D 1S 101 o RS S 38
FUNCLION dECIATALION ..o 38
ATGUIMENE L.t e et e et e et e e sbbe e e bee e enbeeeenees 38

RELUIN COUBS ...ttt ettt e et e e s be e et e e e str e e s areesaaeeas 38
EXAMPIE ..o e 38
10 o] 1T SR 39
D 1S 1010 o SRR 39
FUNCLION dECIATALION ..o 39
ATGUIMENE L.t e et e et e et e e sbbe e e bee e enbeeeenees 39

RELUIN COUBS ...ttt ettt ettt e e e e s e e et e e s ebe e e s areesnaeeas 39
EXAMPIE ..o 39

Sierra User Reference Manual, @ 2017 Copyright by publisher AGSTU AB. o5

Hardware interface

Protocol with external start of blocked task (extended Sierra)

Sierra SW File Structure

Sierra User Reference Manual, @ 2017 Copyright by publisher AGSTU AB.

Introduction

About This Manual

The Sierra RTK consists of two parts:
1. Sierra IP (Intellectual Property) HW

2. Sierra API (Drivers) SW

Revision History

Date Description

2013-03-18 Updated the documentation

2014-07-18 Updated the documentation

2015-02-03 Added task delete and some text debugging

2016-03-03 Added “task_change_prio” and some text debugging, version 9.2

2016-04-17 Change in the scheduler; lowest priority is 0. Same as FreeRTOS
v9.3.1 Add Block task of other then the running. Same as FreeRTOS
Update version register

2016-05-01 #semaphore is not bounded to #tasks
V9.4.0 Sierra Version register updated (see Sierra HW Version)

2017-10-29 Some updates and optimizations. Also a new students Sierra.
V9.4.1

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

Purpose

The purpose of this Users Reference Manual is to give system designers using the
Sierra Real-Time Operating System an overview and functional description of
how it works. Some examples are included in this document as a help to getting
started.

Terms

API

Application mode

Context switch (task switch)
Embedded system

Exception

Interrupt service routine
(ISR)

IP

Real-time system

RTOS

Task/Thread/Process

TCB

Application Programmers Interface, The sum of all function calls available to an
application programmer

A description of a complete system with scheduler, tasks etc. some rtos allows
the programmer to specify more than one mode. 1.e. an aircraft control system
may have different modes for takeoff, landing and level flight.

Switch from current running task to another task by saving current task status,
registers etc., and restore status of the task that shall start to run.

A computer system that forms a component of a larger system and is expected to
function without human intervention.

Software interrupts.

The routine that is called when an interrupt occurs.

Intellectual Property, this is HW/SW components with a specific function.

A real-time system is one in which the correctness of the system depends not
only on the logical result of computation, but also on the time at which the
results are generated.

Real time operating system, an operating system designed to be used in real time
systems.

A task is a sequential programming performing certain functions, a real time
application is usually made up of one or more sets of communicating tasks.

Task control block, a structure containing information about a task, it's state,
stack owned resources, the value of the processor registers etc.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o8

Sierra RTK - General Description

Configuration of the API

This chapter gives short overview of the Sierra RTOS functionality. The Sierra
HW core is partitioned into modules as shown in the figure and described in the

text below.
Kernel Accelerator
Sierra
Running
T = Time M ‘ task info
mq = ime Manager > Tmq > >
Rmg = Resource Manager
Irq = Interrupt Handler T
TDBI = Technology CPU D 4’\ » Rmgq >
Dependent Bus Interface Bus B | GBI f l/O Schedulet
GBI = General Bus Interface | L] >
Irq
|-
External External Start of
Interrupts blocked tasks

Figure 1 Overview of internal blocks in Sierra kernel.

Core Engine

Sierra RTOS is partitioned into these functional units:

Interface

Scheduler

Semaphore and Flag Handler
Time Management Controller

Sierra User Reference Manual, © Copyright by publisher AGSTU AB 9

The interface to Sierra is divided into a generic bus interface (GBI) and a
technology dependent bus interface (TDBI). The GBI is bus independent while
the TDBI is glue to the specific bus in the system. This design of the Sierra makes
it very easy to interface it towards different busses.

Sierra Interface

All communication (service calls) with the Sierra is carried out through registers.
In the internal module interface the service calls are decoded and routed out the
unit that will carry out the service call. This interface synchronizes external
accesses from the CPU as well as all internal work between modules in the chip.

It also pin out that reflect the running task id. Those can be used to drive led
diodes, statistics etc.

In Sierra also interrupt controller is included, that can trig direct a task without
any software.

Also external hardware start of blocked task. This can be used in advanced
system with hardware drivers.

Sierra Configuration

The Sierra is a small complete RTOS kernel with support for task handling,
semaphores, timers and external interrupts. All operations are carried out in the
Sierra chip, and the software that comes with the package is a driver for
communication between the CPU and hardware kernel.

The Sierra handles:

4-512 tasks

4-512 priority levels

4 -1024 semaphores

4 -1024 flags

4 — 512 Timers for delay, periodic tasks
2 —infinite interrupts

Taskswith External

CPU ‘M/pt Sierra_X ‘%n/te rrupt

External Start

I I ‘ of blocked
4 task
S a a
v \ 4 v
Very thin
1/0 ROMY/ RAM layer of SW
FLASH |3// driver for

Figure 2 Example of system configuration.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 10

Scheduler

The Scheduler unit controls all scheduling in the Sierra. The scheduler can handle
tasks at different priority levels. See the configuration table.

Normally a number of tasks are created when the system is initialized. Among
these tasks an idle-task must be created. This task will execute when there is no
other task ready to execute. If no idle-task would exist the system behavior would
be undefined in the case that no task is ready to execute. The idle-task shall not
make any system calls to the Sierra.

Tasks can also be created and deleted dynamically during runtime. When a task is
created it is initialized to a specified state (blocked or ready). Tasks must have a
priority and the priority must be initialized when the task is created. When a task
is created it must be given a unique task-1D so the Sierra can separate the tasks.

A task can exist in five different states; running, ready, blocked, waiting-for-irq or
dormant. The scheduler guarantees that the task with highest priority among the
ready tasks always will run. When a task is running, there are some events that
can change the tasks state to another state, see below.

1. The task asks for a task-switch itself

2. The task tries to lock a semaphore that is already locked and the task
becomes blocked.

3. Atask with higher priority is becoming ready and therefore pre-empts
the task and thereby placing the running task back into the ready-queue.

The Sierra RTOS supports the following task management functions:

enable/disable task switch
create a task

start task

delete task

block/start task

get task information

The task management also support running task id number connected to
hardware pins. For more information see the datasheet.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 11

Task states

The Sierra can support the following task states and transitions:

Running
Ready
Blocked /Waiting
Wait for interrupt
Dormant
task create
|
' task_change_prio
task_info
task create Ready
X task_start
! sem_release irq event
undelay
flag_set
Blocked/ _ Wait for
Waiting task_yield Interrupt
wait_for_next_period irq_wait
sem_take
task_block
delay
flag_wait
task_delete
irg_remove

Figure 3: State transitions in Sierra

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 12

Time Management Controller

In the Sierra, the following time-handling functions are implemented, delay,
undelay and support for periodic tasks. In a system where these functions are
implemented in software they will increase the system-overhead.

In ordinary software RTOS the principle for the delay functionality is as follow.
Every clock-tick the RTOS has to check the timer-queue and decrease each tasks
timer and examine if any timer has expired. When a timer expires for a task it has
to be scheduled in to the ready-queue. All this calculation has a cost in time and
this time increases with number of tasks using the timers.

When it comes to the Sierra all this handling with timers etc. is done inside the
Sierra and all cost in time have been removed from the system.

The Sierra supports the following time management functions:

set timebase register
initialize periodic time
wait for next period
delay

Semaphore and Flag Handler

The Sierra supports the use of 8 binary semaphores and 8 flags as synchronizing
functions. Semaphores are used to synchronize resources in a system that is
shared between tasks. A resource can be an 1/0 port, a memory area etc.

Flags are used to synchronize events between tasks. Flags are very useful as many
tasks can be triggered by one flag at the same time. For example; More than one
task is waiting for a result that a certain task produces. By setting a flag, the
producer activates all waiting tasks at the same time and the scheduler decides
which of them should run according to priority, place in queue etc.

These semaphore functions are supported:

sem_take
sem_release
sem_read

These flag handling functions are supported:

flag_wait
flag_set
flag_clear

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 13

Information, Setup and Initiating

Sierra Hardware/Software Initiation

Description

Initiate the TCB in soft/hardware and also reset the Sierra hardware. This can
always use to make a reset of SW drivers and HW based sierra. All tasks, etc.
kills and also the task switch is disable, also the TCB will be cleared. After
instantiation the task switch is off. This is done in less than 100 system clock for
the standard Sierra IP.

Function declaration

void Sierra Initiation HW and SW(void)

Argument
Nothing

Return codes
Nothing

Sierra HW Version

Description

Sierra Version number can you get from Sierra Hardware if you call
sierra_HW_version function.
e MAJOR version when you make incompatible changes,
e MINOR version when you add functionality in a backwards-compatible
manner
e PATCH version when you make backwards-compatible bug fixes
e Number of tasks

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 14

Table 1: Sierra version register (binary)

31-28

27-24

23-20 19-16 15-8 7-0

MAJOR_version

MINOR _version | PATCH_version X Number of semaphores Number of tasks

Function declaration

unsigned int sierra HW version(void)

Argument
Nothing

Return codes

Unsigned int

Example

printf ("Sierra HW version = %d\n",
sierra HW version());

Return:
Sierra HW version = -1827667965 (unsigned int)

Special print function (info.c)

Void Printf sierra HW version (void)

Return:

Version = 9.3.1

Number of task bits = 3

Number of semaphore’s bits = 3

Sierra SW Version

Description

Sierra Version number can you get from Sierra Hardware if you call
Sierra_SW_Driver_version() function.

Function declaration

unsigned int sierra SW driver version (void)

Argument

Nothing

Return codes

Unsigned int

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 15

Example
printf (" Sierra SW version = %d\n",
sierra SW driver version());

Set and Read Time Base Register

Description

Sets or read the internal clock-tick timebase for the Sierra. This register is used to
set-up the generating of Sierra internal clock tick period for all timing queues in
Sierra.

Time Base Unit

SyStem Frequence Clock —ﬂ Time tick = Time Base register * 1000/System Frequency Clk ‘ —

Internal_Time_tick
To Timing queues in
Sierra

A

’ Time_base Register ‘

A

CPU write to register

Figure 4 Time Base Unit

Sierra Time Base register value = Time tick * system Frequency/1000

Function declaration

//Set time based register.
void set_timebase (unsigned int time set)

//Read Time base register
unsigned int SierraTime base_reg (void)

Argument
//Set time based register, see sierra specification

for number of bits:
//13 bits; time set: range 0-8191, please check the

version of hardware.
unsigned int

//Read Time base register
Nothing

Return codes
//Set time based register (32 bits)
Nothing

//Read Time base register
unsigned int

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 16

Example

void tl(void)
{

set timebase(50); /* Set Sierra internal clock-tick
to lms when the HW kernel runs
at 50 MHz system clock*/

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 17

Task Management

This section describes the task handling services provided by the scheduler in the
Sierra. The difference between Sierra and other RTOS kernels is that all
scheduling is performed by a hardware piece instead of software. The only
software is the driver that communicates with the hardware kernel. The following
task management functions are implemented in the Sierra hardware kernel:

Dynamic creation of tasks (task_create)
Starting of tasks (task_block)

Yield (task_yield)

Get task status (task_getinfo)

Task switch off and on (tsw_on and tsw_off)
Change task priority

Ready que is organized in two ways (scheduling algorithm):

e Priority driven (lowest priority is 0)

e Same priority is sorted in ID number order, from low to high.
e Preemption

Idle task has to be created with task id 0 and lowest priority (0).

task create

Description

Creates a task with a unique task id. The task will be initialized to a state
(blocked or ready) as specified in the argument. It is possible to create new tasks
dynamically during system execution. Idle task has to be created and have task id
0 and lowest priority (0).

Function declaration

void task_create (int taskID,
int priority,
int taskstate,
void (*taskptr) (void),
void *stackptr,
int stacksz);

Argument

task ID Specifies the ID of the task (range depend on the version of Sierra).

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 18

An idle task must be created and this task shall have task|D=0.

priority Specifies the priority of the task. The range is dependent on the
version), where 0 is the highest-priority level. Highest ID number is
reserved only for the idle task.

taskstate 0 = task is initialized to the blocked state
(BLOCKED_TASK_STATE)
1 = task is initialized to the ready state (READY_TASK_STATE)

taskptr Pointer to code start for the task
stackptr Pointer to task stack

stacksz Size of the stack

Return codes
Nothing

Notes/Warnings
Nothing

Example

#define IDEAL 0
#define READY 1
#define PRIO1 0
#define STACK1 SZ 200

#define T1 1

#define READY 1

#define PRIO1 1

#define STACKL SZ 200
char stackl[STACK1l SZ7];

void tl(void)
{

task code;

}

void function (void)

{

task create(Tl, PRIO1, READY, tl, stackl, STACK1l SZ7);

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 19

task_start

Description

Starts a task that is currently placed in blocked state (un-block the task). Starting
a task means that the task is sent into the ready state (see section 2.4., Scheduler)
and does not mean that the task starts to execute immediately. The task will be
moved from blocked state to ready state.

Function declaration
void task_start (int taskId)

Argument

task ID Specifies the ID of the task (range depend on the version of
Sierra).

Return codes

Nothing

Example
#define T2 2

void tl(void)
{

task start(T2); /* tl starts T2 */

while (1)
{

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 20

task getinfo

Description

Get status information about a specified task.

Function declaration

task info t task_getinfo (int taskid)

Argument

task ID Specifies the ID of the task (range depend on the version of

Sierra)

Return codes

task _info_t state_info (2 bits):
0=Running
1=Blocked
2=Ready
3=Dormant

priority (3 bits, depend on the version of

Sierra) :

7 is the lowest priority level and O is the highest.

Example

task info t info;

printf ("Idle\n");

info = task getinfo (IDLE);
printf (" info.state info
printf (" info.priority =

printf ("Taskl\n");

info = task getinfo(Taskl)
printf (" info.state info
printf (" info.priority =

= %d\n", info.state info);
%d\n", info.priority);

|~

%d\n", info.state info);
$d\n", info.priority);

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 21

tsw_ off

Description

Disables task-switch interrupts in the system. This is useful when a critical section
is entered. Anyhow, this call should be used with restrictions in a real time system
as it has effects on how/when tasks can start to run. If this call is used, try to have
the task-switch interrupt off as short time as possible.

Function declaration

void tsw_off (void)

Argument
N/A

Return codes
N/A

Example
void tl (void)
{

while (1)
{

tsw off (); /* Entering critical section -
Turn off task-switch interrupts
*/

Sierra User Reference Manual, © Copyright by publisher AGSTU AB ° 22

tsw_on

Description

Enables task-switch interrupt.

Function declaration

void tsw_on(void)

Argument
N/A

Return codes
N/A

example
void tl(void)
{

while (1)
{

tsw on(); /* Leaving critical section - Turn on

task-switch interrupts */

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 23

task block

Description

Blocks the currently running task. The task will be moved from running state into
blocked state. It is not allowed to block idle task.

Function declaration
void task _block (int taskId)

Argument

task ID Specifies the ID of the task (range depend on the version of
Sierra).

Return codes
N/A

Example

#define T2 2

void tl (void)

{

int i=0;

while (1)

{

i++;

if (i==10) {task block(T2);i = 0;}
/* Block t2 when i==10 */
}

}
}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB ° 24

task_change_ prio

Description

This call changes a task's priority to a specified priority. It is not allowed to change
idle task priority.

Function declaration

void task_change prio (int taskID, int priority);
Argument

task ID Specifies the ID of the task (range depend on the version of Sierra).

priority Specifies the priority of the task. “1” is the lowest-priority level for
user tasks (IDEAL has “07).

Return codes
N/A

example
#define T2 2
#prio_S 5
void tl(void)
{

task change prio(T2,prio 5); /* Task T2 get
priority 5 */

while (1)
{

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 25

task _delete

Description

Delete the currently running task. The task will be moved from the system and the tasl

id number will be free to be used again. Most be created again to start. It is not
allowed to perform this call from the idle task.

Function declaration
void task_delete(void)

Argument
N/A

Return codes
N/A

example
void tl (void)
{

int i=0;
while (1)

{

i++;

if (i==10) {task delete();1 = 0;}
/* Removed tl from the system when i==10 */

}
}
}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 26

IRQ Management

This section describes the functionality of the Interrupt Manager. The interrupts
are associated with an interrupt task, which is scheduled as an ordinary task in the
system. External interrupt is connected to Sierras external IRQ pins. Each IRQ
input is level sensitivity and active-high.

The following functions is implemented in hardware:
e Wait for interrupt

If several external interrupts occur simultaneously, the task associated with
highest interrupt pins will be the first one sent to the ready queue.

Task i .
a executing L' Task sx acuting
]
5
>
4 Execute ISR code
3
—/
2
]
1 e e e B B -
Time Irgl Irgq2
SW solution, Externalinterrupt Sierra solution: Schedule external interrupts based at the priority

Figure 5: SW RTK and HW based Sierra solution, two low priority irg.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 27

Wait for interrupt

Description

This call used when an interrupt service task is ready to process to wait for an
external interrupt. As a result of this call, the interrupt service task (running task)
will be moved to the ‘Wait for interrupt’ state.

The Id of task that the CPU should context switch too is in the return data.

Function declaration

void irg wait(int IRQ number);

Argument

IRQ number Specifies the interrupt level. The range of the interrupt level
depends on the version of the Sierra.

Return codes
Nothing

Example

niosl|

Figure 6: Example of two external irq

void Irg_task code (void)
{
int i=0;
printf ("IRQ Task starts\n ");

while (1)

{
irg wait(l); //Wait for external IRQ O
printf ("IRQ 1 start\n");
for (i=0; 1<500000; i++); //virtual load
irg wait (0); //Wait for external IRQ O
printf ("IRQ 0 start\n");
for (i=0; i<500000; i++); //virtual load

Sierra User Reference Manual, © Copyright by publisher AGSTU AB * 28

Time Management

This section describes the functionality of the time management controller. The
following functions are implemented:

delay
init_period_time
wait_for_next_period delay

Description

Blocks the calling task specified number of ticks. The task will be placed in the
blocked state until the timer expires or an undelay call is performed on the task.

When the timer expires, or if the undelay call is performed, the task is placed in
the ready state.

Function declaration

void delay (int delay time)

Argument

delay_time Specifies the number of ticks to delay the task.
Max value depend on the version of Sierra.

Return codes
Nothing

Example
void tl (void)
{

while (1)
{

delay(10); /* tl is blocked for 10 ticks */

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 29

init_period_time

Description

Initialize the period time for the calling task. This function must be performed
before the use of the function wait_for_next_period(). See the version of Sierra
for the max value. Possible to use deadline control, to detect starvation.

Function declaration

void init period time (int period time)

Argument

Period_time Specifies the period time, in number of ticks, for calling task.

Return codes

Deadline_control

Nothing

Example

void tl(void)
{

init period time(100); /* Initialize period time
for tl to 100 ticks */

while (1)
{

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 30

wait_for_next period

Description

Suspends a periodic task until the start of next period time. If you miss a periodic
start, Sierra will skip this period, not to disturbed the other tasks and also report
the miss to the periodic task. The deadline is the same as the period time.

To use deadline control cost no extra execution or response time to manage.

Period Missed
Task A start deadline
Waiting = - E—
Ready Queue == e— =
Runniug — Time
(executing) >

Deadline Control ,—‘— é

Figure 7: Periodic start with deadline control

Function declaration

void wait_for next period (void)

task periodic start union wait_for next period (void)

Argument
deadline_control:
0: Ok

1: missed at least one deadline.

Return codes

Nothing

Example

// Without deadline control
void tl(void)

{

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 31

init period time (50);
while (1)
{
wait for next period();
}

// With deadline control
task periodic_start union test;

while (1)
{
test = wait for next period();

if (test.periodic_start integer & 0x1)
printf ("deadline miss, timer task");

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 32

Semaphore Management

This section describes the functionality of the semaphore management. The
semaphores are used in the system to protect shared resources and for
synchronization of different tasks.

There are 8 binary semaphores available in the Sierra. A semaphore can have a
queue of waiting tasks that is as long as there are tasks in the system. This means
that a semaphore can be taken by one task and up to 8 other tasks can be waiting
for it. The queue is arranged by task-id numbers. Task with highest id-number in
the queue will run when the semaphore becomes available.

The following semaphore handling functions are supported:

sem_take
sem_release
sem_read

sem_take

Description

Makes a task pending (waiting) for a semaphore. If the semaphore is free, the
task will continue to execute immediately. If the semaphore is allocated by
another task, the calling task will be suspended and put in a semaphore waiting
queue, until the semaphore becomes free.

Note: The queue is arranged in task-id numbers and task with highest id-number
in the queue will get the semaphore when it becomes available.

Function declaration

void sem_take (int semlD)

Argument

semID Semaphore number (0-15)

Return codes

Nothing

Example

#define SEM1 1

void tl(void)
{

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 33

while (1)

sem_take (SEM1); /* Pend on semaphore 1 */

sem_release

Description

Releases a specified semaphore. If there are one or more tasks waiting for the
semaphore, the first task in the semaphore waiting queue will get the semaphore
and will be moved to ready state.

Function declaration

void sem _release (int semID)

Argument

semID Semaphore number

Return codes

Nothing

Example

#define SEM1 1

void tl(void)
{

while (1)
{

sem release (SEM1); /* Release semaphore 1 */

Sierra User Reference Manual, © Copyright by publisher AGSTU AB ° 34

sem_read

Description

Read a task’s semaphore status.

Function declaration

Sem info t sem read (int taskID)

Argument

tasklD Specifies the taskID to read status of.

Return codes

Sem_info_t

status 0 = The task is not waiting for a semaphore (ignore semiD)
1 = The task is waiting for a semaphore (Read semiD)

semID Semaphore number if specified task is waiting for a
semaphore.

Example

#define SEM3 3

void tl(void)

{
sem_info t sem;
int semID, status;

while (1)
{

sem = sem read(T2); /* Read semaphore status of
task T2 */

/* The different member variables in the
returned data-structure: */

status = sem.status;

semID = sem.semlD;

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 35

Flag Management

The Sierra has support for flags for efficient synchronizing of events. The entire
synchronizing algorithm is handled by the hardware kernel. This makes handling
of flags very efficient since no valuable CPU time is spent on synchronization.

Flags are very efficient in cases where you, for example, have one or several
events handled by some input tasks and there exist an output task triggered by
one or several tasks - see figure 4 below.

Eventl flagl is set
wait for flagl
& flag2 output task is put in
Output ready queue
_— task >
Event2 flag2 is set
—_ D —_—

Figure 8 Flag example

The semantics for the figure is; the output task makes a system call where it will
need a combination of flags set to be able to continue to run. If this combination
is not true at the time when the call is performed, the task will be suspended until
the combination becomes true. Later on, task1 runs and sets flagl. In this
scenario the output task will not be made ready at this point, as it asks for an
AND operation between flag1 and flag2. After task2 has set flag2, the output task
will be made ready. The output task is scheduled and will start to run when it has
the highest priority in the ready queue.

If the Sierra is configured to support 4 flag bits, the flag bits can be used in
24-1 (=15) different combinations.

The following flag handling functions are supported:

flag_wait
flag_set
flag_clear

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 36

flag_wait

Description

This call makes a task wait for one or more flags to be set. If the flag(s) are
already set, the task will continue to run. Otherwise it will be suspended until the
combination is set.

Function declaration

void flag wait (int flag mask)

Argument

flag_mask The four lowest bits are used i.e. values between
1-15 are valid. 0 is not a valid flag value.

Return codes
Nothing

Example

#define FLAG MASK 5 /* Flagl AND Flag3 -> 0101 */

void tl(void)
{

while (1)
{

flag wait (FLAG MASK); /* Wait for Flagl and
Flag3 to be set */

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 37

flag_set

Description

This call sets one or more flags. If there are any task(s) waiting for the specific
combination of flags that are set during the call, they will be made ready and start
to run when they have the highest priority in the ready queue.

If a task is waiting for a combination of flags and the call only sets one or few of
the flags, the waiting task will not be activated before all flags are set.

Function declaration

void flag_set (int flag mask)

Argument

flag_mask The four lowest bits are used i.e. values between
1-15 are valid. 0 is not a valid flag value.

Return codes
Nothing

Example

#define FLAG MASK 7 /* Flagl AND Flag2 AND
Flag3 -> 0111 */

void tl(void)
{

while (1)
{

flag set (FLAG MASK); /* Set Flagl, Flag2 and
Flag3 */

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 38

flag_clear

Description

This call clears one or more flags. When a flag has been set, it needs to be cleared
after a waiting task has taken care of the event that was waiting for the flag. If
there is more than one task using the flag, it is important to know which one(s) of
these tasks that will be permitted to do this call.

Example; there are two tasks waiting for a common flag, but one of the tasks is
also waiting for another flag. When this flag is set, the task that only waits for this
flag is made ready and will start to run when it has the highest priority in the
ready queue. However, if the other task still is waiting for the other flag when this
first task has done its job, this first task should not clear the flag as the other task
still is depending on this flag. In this specific scenario it is the task that is waiting
for both flags that should clear the flag.

Function declaration
void flag clear (int flag mask)

Argument

flag_mask The four lowest bits are used i.e. values between
1-15 are valid. 0 is not a valid flag value.

Return codes
Nothing

Example

#define FLAG MASK 7 /* Flagl AND Flag2 AND
Flag3 -> 0111 */

void tl(void)
{

while (1)
{

flag clear (FLAG MASK); /* Clear Flagl, Flag2
and Flag3 */

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 39

Hardware interface

Sierra is a component with bus interface, running task id information, external interrupt and external start of blocked
tasks.

Bus interface (TDBI) can be wrapped to the most busses on the market.

Running task id info can be used to monitor the running task or logged of another hardware units for different types
of analyses.

External interrupt is direct connected to a task and the task will be scheduled before it can be running on the CPU
External start of blocked task is an advanced function to communicate with hardware units connected to SW tasks.

Kernel Accelerator

Sierra
/\ Running

task info
—» Tmg >

v

v
Py,
3

2

v

. GBI)} 1/O Schedullet

2 G
w C
— WO
T:
o]
A

A A 4

External External Start of
Interrupts blocked tasks

Figure 9: Block schematic

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 40

sierra
== address[7..0] readdata[31..0] =
— clk irq [
— chipselect_n external_runing_taskid_info[2..0] frm—
— read_n external_ack_start_task —
= Writedata[31..0]
= extirq_n[1..0]
— reset_n
— write_n
— external_call_start_blocked_task
=== external_taskid_start[2..0]
inst4
Figure 10: Sierra pin Interfaces
Table 2 Sierra Pin out

Pin name Direction | Description

clk Input, Sys System clock

reset_n Input, Sys HW reset

cs_n Input, Bus Chip select

write_n Input, Bus Read / Write

addr(7:0) Input, Bus Address bus

din(31:0) Input, Bus Data bus in

dout(31:0) Output, Bus | Data bus out

irg_n Output, CPU | Task switch interrupt

extirg_n(1:0) Input, User External interrupts

External_runing_taskid_info[2..0]

Output, User

Updating Running task id

(binary)
external_call_start_blocked_task Input, User Start of Blocked Tasks, Not
(extended Sierra) used = ‘0’.
external_ack_start_task Output, User | Start of Blocked Tasks
(extended Sierra)
external_taskid_start[2..0] Input, User | Start of Blocked Tasks

(extended Sierra)

Protocol with external start of blocked task (extended sierra)

Start of blocked task is done with following protocol:

1) Set “external taskid start” that should be started (it have to be in block state, block task()) and write ‘1’ to
“external call start blocked task”

2) Wait for “external ack task start”to be ‘1’

3) Write ‘0’ to “external call start blocked task”

4) Wait for “external ack task start” to be ‘0’

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 41

Sierra SW File Structure

The Sierra API SW consists of the following files:

(] Sierra_RTOS
CJHAL
CJinc
altera_avalon_sierra_io.h
altera_avalon_sierra_ker.h
altera_avalon_sierra_name.h
altera_avalon_sierra_regs.h
altera_avalon_sierra_tcb.h
altera_avalon_sierra_tch_offset.h
CJsrc
csw.S (context swtich routine)
sierra.c (basic service calls)
sierra_sem.c (Semafres and flags service calls)
sierra_taskc (Task service calls)
sierra_time.c (Time service calls)
sierra_info.c (Extra debugg service calls)
alt_exception_enty.S (Niosll exception handling)
alt_exception_trap.S (Niosll trap handling)
component.mk (makefile)

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 42

